
www.manaraa.com

RESEARCH PAPER

Provalets: Component-Based Mobile Agents as Microservices
for Rule-Based Data Access, Processing and Analytics

Adrian Paschke

Received: 15 November 2015 / Accepted: 21 June 2016 / Published online: 18 August 2016

� Springer Fachmedien Wiesbaden 2016

Abstract Provalets are mobile rule agents for rule-based

data access, semantic processing, and inference analytics.

They can be dynamically deployed as microservices from

Maven repositories into standardized container environ-

ments such as OSGi, where they can be used via simple

REST calls. The programming model supports rapid pro-

totyping and reuse of Provalets components to build

Linked Enterprise Data applications where the sensible

corporate data is not transmitted outside the enterprise, but

instead the Provalets providing data processing and

knowledge inference capabilities are moved closer to the

data.

Keywords Microservices � Linked enterprise data �
Corporate semantic web � Corporate smart content � Rule-

based agents � Inference service � Rule-based data analytics

1 Introduction

The Corporate Semantic Web (CSW) (Paschke and

Schäfermeier 2015)1 deals with applications of semantic

technologies in a corporate context. The goal of the Linked

Open Data (LOD) is to expose machine interpretable data

in Resource Description Framework (RDF) on the web.

The applied principles of Linked Data can also be used in a

corporate environment, then named Linked Enterprise Data

(LED). While interlinking of machine interpretable Linked

Data has been adopted in the Public Semantic Web as LOD

cloud (Schmachtenberg et al. 2014), corporate enterprises

are still reluctant to use this approach to form their own

private Linked Enterprise Web of Data for, e.g., semantic

data processing, smart content enrichment2 and inference-

based analytics (Hu and Svensson 2010a; Wood 2010).

Reasons for this are, e.g., the lack of an easy to use and

understand engineering and service-oriented approach

(e.g., Service Oriented Architecture – SOA). This has lead

to, e.g., the W3C Linked Data Platform (LDP)3, which

standardizes a REST protocol for accessing (read/write)

Linked Data. While this provides a basis for SOA-based

Enterprise Application Integration (EAI) (Mihindukula-

sooriya et al. 2013) with a standardized, typically mono-

lithic LDP orchestrating service and access to data and

applications via service interfaces, it does not solve the

problem of developing a single LED application composed

of distributed LED microservices4. The microservice

architectural style5 is a modern SOA approach to devel-

oping a single application as a suite of small services

(microservices) which are executed in their own container

processes (e.g., Docker, OSGi) and communicating with

other microservices via lightweight protocol mechanisms.

Microservices are becoming the adopted standard for

continuously deployed systems (Balalaie et al. 2016) with,

Accepted after two revisions by the editors of the special issue.

Prof. Dr. A. Paschke (&)

Institute of Computer Science, AG Corporate Semantic Web,

Freie Universität Berlin, Königin-Luise-Str. 24, 14195 Berlin,

Germany

e-mail: paschke@inf.fu-berlin.de

1 http://www.corporate-semantic-web.de, accessed 1 Jun 2016.
2 http://sce.corporate-smart-content.de/, accessed 1 Jun 2016.
3 http://www.w3.org/TR/ldp/, accessed 1 Jun 2016.
4 Microservices is a software architecture style designing a software

application as a suite of independently deployable small services

providing e.g., (agent) intelligence in the endpoints, and decentralized

control of languages and data.
5 Martin Fowler: http://martinfowler.com/articles/microservices.

html, accessed 1 Jun 2016.

123

Bus Inf Syst Eng 58(5):329–340 (2016)

DOI 10.1007/s12599-016-0447-z

http://www.corporate-semantic-web.de
http://sce.corporate-smart-content.de/
http://www.w3.org/TR/ldp/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-016-0447-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-016-0447-z&domain=pdf

www.manaraa.com

e.g., mobile and distributed component-based application

logic. They are increasingly used for the Platform-as-a-

Service (PaaS) offerings of commercial provides (see e.g.,

IBM Bluemix, Microsoft Azure, Cloud Foundry). The

microservice approach has major benefits for LED-based

applications:

• Scaling of agile development processes becomes pos-

sible because microservice can be developed indepen-

dently and distributed, e.g., development of

microservices for different LED sources, involving

different organisational units or different data and

knowledge engineers.

• Continuous deployment in standardized container envi-

ronments and composition becomes easier, making it

possible to build LED processing and inference/analyt-

ics pipelines out of mobile microservices.

• Microservices can be easily enhanced, redeveloped and

replaced because they are compact and introduce

dependencies only via their API. This enables to

develop a stable and robust application composed of

independently scaled (including e.g., parallelization)

and maintained microservices.

The microservice approach also addresses further LED

adoption problems such as worries about data security and

data privacy, as well as legal concerns. Enterprises are

reluctant to move their data into the cloud and to allow

external providers to store or process their sensible data.

With greatly diverging security and judical standards (e.g.,

data sovereignty laws6) worldwide the risks of loosing

control over sensible data appear too high for them.

To overcome these hurdles for the adoption of Linked

Enterprise Data we propose an easy to use standardized

component-based microservice model for mobile software

agents providing rule-based semantic Linked Data access,

data processing, and inference-based analytics functional-

ities. Instead of sending all data to a centralized external

provider, the microservice-based agents can be moved

closer to the data and their execution remains in the control

of the data producer. Hence, privacy problems are avoided

and additional permissions can be defined in the agents

metadata and policies, so that the controlled container-

based runtime environment can enforce them and reject

agents that request permissions that cannot be granted. We

call this novel concept Provalets7 (Paschke 2015). For

Provalets we adopt the Representational State Transfer

(REST) architecture style which has become increasingly

popular, e.g., for REST-based Services such as the LDP.

REST uses URIs to address resources and transport pro-

tocols such as HTTP to transfer representations.

Provalets address core requirements in a Corporate

Semantic Web by enabling the rule-based use of Linked

Enterprise Data in new business models that avoid the core

issues with data privacy. All sensitive data remains in a

trusted and controlled container-based environment. Pro-

totyping with Provalets requires no configuration of any

hard- or software at all. Instead Provalets agents can be

automatically managed and deployed from standard

repositories, such as Git or SVN, in their runtime container

environments as microservices. Developers can access and

test Provalets with their data by simply calling the API with

the right REST URL. Therefore, Provalets use ideas from

software agents, microservices, automated DevOps build

management, and trusted runtime container environments

(including cloud and smart/edge infrastructures) to place

data intensive routines near the actual data. Among many

other benefits, this omits data privacy issues as well as

bottlenecks in the network infrastructure and might also

leverage in-memory architectures and streaming data

pipelines. Application domains of Provalets are manifold,

reaching from decentralized microservices for edge infer-

ence/analytics to multi agent systems for data pipelines and

weakly-structured workflows (Zhao et al. 2016).

The implementation of Provalets encapsulates data

intensive rule-based data processing and inference rea-

soning [e.g., for representing decision and reaction logic

(Paschke 2011)] in rule-based Prova agents (Paschke and

Boley 2011)8, which are deployed as microservices in

standardized containers such as Docker and trusted OSGi

(OSGI Alliance 2009). For their engineering and auto-

mated build management they make use of aspect-oriented

OntoMaven/RuleMaven (Paschke and Schäfermeier 2015;

Paschke 2013a, b). For their composition an expressive

Prova-based workflow language (Zhao and Paschke

2012, 2013a, b; Zhao et al. 2016) is used, which can be

translated into Reaction RuleML9 (Paschke 2014; Paschke

and Boley 2014; Boley et al. 2010) for their standardized

rule-based agent communication via Jetty WebSockets.

The paper follows a design science research methodol-

ogy and addresses the development and evaluation of

Provalet design artifacts. Our contributions are as follows:

1. We present an easy to use standardized component-

based model for distributed microservices based on

mobile software agents providing rule-based semantic

Linked Data access, processing, and inference-based

analytics functionalities.
6 Data is subject to the laws of the country in which it is located,

which becomes a big privacy and compliance issue if data is moved to

cloud service provides which operate cross-countries.
7 http://sce.corporate-smart-content.de/provalets, accessed 1 Jun

2016.

8 http://prova.ws, accessed 1 Jun 2016.
9 http://reaction.ruleml.org, accessed 1 Jun 2016.

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

http://sce.corporate-smart-content.de/provalets
http://prova.ws
http://reaction.ruleml.org

www.manaraa.com

2. The standardized (mobile) component model makes it

a generic approach suitable for standard container run-

time environments, in-memory architectures, cloud-

based environments, as well as distributed smart IoT/

IoE, and edge devices. The proof-of-concept imple-

mentation supports both OSGi containers and Docker

containers.

3. The rule-based programming model supports rapid

prototyping for both traditional ex-post data access to

knowledge bases [rule-based data access ? typed

ontology-based data access (via order-sorted logic

approach)] as well as real-time streaming data (RDF

stream processing) with rule-based complex event

processing and reasoning.

4. The existing repository architecture for knowledge

base artifacts, the standardized API for Knowledge

Bases (API4KB) (Athan et al. 2015a), and the tool-

supported life cycle model makes it an easy to use

solution for Linked Enterprise Data in the Corporate

Semantic Web that can guarantee important properties

such as policy-based/SLA-based quality of service

(QoS), data security, and privacy.

5. The Provalet concept has potential for novel business

models that allow to create new value chains based on

Linked Enterprise Data microservices/agents (e.g.,

rule-based data analytic pipelines and reasoning

workflows provided by platform-as-a-service/con-

tainer-as-a-service models).

Provalets provide the basis for an analytics-as-a-service

business model, in which data-driven inference analytics

operations are provided as component-based Provalet

agents. The dynamic processing pipelines and the expres-

sive composition semantics with possible parallel execu-

tions make it a highly scaleable container approach.

Furthermore, the standardized OSGi-based implementation

makes Provalets useable not just for centralized cloud

platforms, but also in edge and fog containers. The Provalet

microservice proof-of-concept implementation with

Apache Felix running in Apache Karaf can be also

deployed in Docker containers. The use of controlled

container resources allows Provalets to process the private

data of a company, while restricting the transfer of data to

an external user, e.g., by anonymization, search or aggre-

gation of sensitive data without a loss of control.

This article details the Provalet concept previously

introduced in Paschke (2015) by presenting application

scenarios, a proof-of-concept implementation, and a con-

crete development example. The further paper is structured

as follows: we begin with application scenarios in Sect. 2

and relate our work to previous efforts in Sect. 3. Then we

introduce the underlying principles of Provalets in Sect. 4.

In Sect. 5 our proof-of-concept implementation is

described, and for better understanding we give a concrete

development example in Sect. 6. An evaluation by com-

parison with related approaches and by looking at the

representation expressiveness is give in Sect. 7. We con-

clude our work in Sect. 8.

2 Application Scenarios

In order to illustrate the distinctive features of Provalets,

such as continuous deployment, mobile execution, and

component-based composition, we describe several appli-

cation scenarios in this section.

Corporate Smart Content Enrichment and Delivery An

example for such a scenario are smart street lights equipped

with a gateway capable of running Provalets, which deliver

situation-aware personalized smart content (e.g., local

information feeds collected from the surrounding Smart

City IoT sensors, local news, or promotion offerings from

local shops) to the location-based devices (e.g., mobile

phones, connected cars) passing by the lamps. For instance,

a deployed Provalet detects by analysing IoT event streams

from Smart City street sensors that a known client attaches

or will soon connect to a WiFi hot spot in a smart city

environment. It calls and deploys a Provalet that pro-ac-

tively enriches the Wifi data point with the client’s known

history, metadata/background knowledge, and personalized

state/profiling information. Relevant further Provalets that

will contribute to the personalized smart content delivery

service provided at the Wifi hot spot for the client are

determined and selected from the many available ones.

Decomposed processing tasks and analytical ? semantic

logic are automatically deployed as Provalets to the used

edge device. Optimized streaming data pipelines are

dynamically established by the Provalets, which transpar-

ently process the data streams and deliver the relevant

smart content.

As a possible example consider a salesman on a business

trip who wants to eat with one of the companies’ clients to

use the remaining working time. The location-aware Pro-

valets can help to identify the nearest clients, automatically

contact these clients to inquire if they want to meet, and

arrange a meeting place by reserving a table at the next

available restaurant. A related scenario exploiting Linked

Enterprise Data has been studied in Hu and Svensson

(2010b) for a centralized customer information portal as

solution approach. A major benefit of the Provalet

approach is that there is no need to collect and integrate all

required data into one centralized information store.

Instead the private data of the salesman and of the clients

can remain locally in their phones, and the processing logic

is continuously deployed to the data as mobile (trusted)

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

www.manaraa.com

Provalet microservice via the nearest connected Smart

Light gateway.

Another possible use case scenario is an online delivery

service that can check the current location of an ordering

customer via a Provalet and use its rule-based logic to

decide where to deliver.

Corporate Smart Content Analytics-as-a-Service

Although there is a number of third-party web services and

platform-as-a-service offerings available for linked data

management and text analytics (see, e.g., Dimitrov et al.

2015), companies are generally not able to use them

because of privacy issues. Currently the services can only

be used by sending the private text data, such as e-mails

and working documents, to the service – which is of course

a huge privacy issue. Additionally, this task also has

scalability problems, as all the documents and even the

results of the services have to be transferred over the net-

work. That is the reason why most of the companies

wishing to analyze company-internal data still rely on their

own solutions, which is of course expensive and quite

unnecessary. Provalets provide an excellent way to

improve this situation. Instead of bringing the data to the

service operation, the operation is transferred to the data

and executed close to it. In this way, both problems can be

solved at once – the privacy issue disappears as the data

remains inside the company, and additionally neither the

documents nor the results have to be transferred over the

network in a time-consuming process. Text mining and

other analytics operations are normally complex operations

including links to additional data like knowledge bases and

taxonomies. Such knowledge sources can be externally

linked and accessed by the Provalet based on permissions

granted. Of course it must be guaranteed that no private

data leaves the company boundaries at any time. Access

and usage of this knowledge resources can be provided by

other Provalets, e.g., via Prova’s query built-ins and via

OMG API4KB compliant interfaces. This would also allow

fine grained control of the Provalet information extraction

from data sources such as enterprise documents. Instead of

sending the whole document only the extracted (and maybe

transformed) information is delivered to a location outside

the container resource.

Smart Data Analytics Pipelines and Workflows Most

LED processing and analytics scenarios – including the

above text mining scenario - consist of multiple processing

steps, reaching from data collection and access, pre-pro-

cessing transformation and semantic enrichment, to

knowledge-based processing, reasoning and inductive

learning, as well triggering rule-based (re-)actions.

For instance, semantic Complex Entity Recognition

(CER) combines a series of technologies from the Natural

Language Processing (NLP), Text Mining and semantic

knowledge representation field in order to go a step beyond

recognizing simple named entities and to extract clusters of

related information from text, such as unstructured enter-

prise information documents. The CER process is divided

into three sub-processes:

1. In the first process the documents are processed in an

NLP pipeline to recognize named entities, followed by

relation extraction, where the explicit relationships

between entities are recognized, extracted and matched

to possible candidates in background LED knowledge

bases. In a final reduction step the text documents are

reduced to a set of entities and their relationships.

2. The second process is an enrichment activity, where

additional knowledge, such as types, super-types or

semantically related entities, from background KBs is

added to the extracted entity/relationship sets. This

enrichment is conducted by means of a series of rules

which are used to conditionally infer which knowledge

should be added.

3. In the third process the actual complex entities are

mined through multiple machine learning steps, such

as topic entities through (dynamic) LDAs, trend

mining, and co-occurrences in enriched entity sets.

In Complex Event Processing (CEP) data streams are

analyzed and monitored to detect sophisticated situations

and phenomena in real-time based on event patterns

(Teymourian and Paschke 2016). Semantic Event Pattern

Mining aims at discovering and learning such complex

event patterns from the real-time event instance sequences

(EIS) by exploiting semantic knowledge. EIS are analyzed

according to their (temporal) occurrence and structure to

mine frequent patterns, association rules, time-series, epi-

sodes, and many more. By attaching semantic background

knowledge to each event, the event content becomes more

exploitable than the raw data is for learning complex pat-

terns. This might involve multiple steps, such as semantic

representation of streaming data (see e.g., W3C RDF

Stream Processing), semantic enrichment of the real-time

data streams, semantic semantic pattern mining and

streaming analytics.

These use cases have in common that an event model is

trained or an event pattern is learned and then applied to

the productive streaming data for complex event recog-

nition and streaming analytics in real-time. A further step

are predictions of unknown events that are not part of the

past EIS, i.e. an event that cannot be found in the his-

torical data. For instance, this can be an industrial

machine breakdown in predictive maintenance, an

unforeseen pathological state in medicine, a suspicious

financial transaction in fraud detection or a network

intrusion in cybersecurity. Early discovery of anomalies,

warning, prediction, and prevention of unwanted events is

often of highest business value.

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

www.manaraa.com

Provalet’s microservice approach supports such appli-

cations by composing the needed agents with their LED

processing and analytics/inference functionalities into data

pipelines and more expressive rule-based workflows (Zhao

et al. 2016).

3 Related Work

Different programming approaches, such as standard pro-

gramming APIs to e.g., EJBs, CORBA, Web Services,

REST services for data processing and data analytics, exist.

General program APIs can read and write Linked Data

resources. Such programs can be in principle deployed to

any device by downloading and executing them in an

appropriate environment. However, the interface of typical

program APIs does not offer a component model, network

availability or a permission model, as it is provided by

Provalets.

Enterprise Java Beans are comparable to Provalets with

the main difference that EJBs cannot be installed dynam-

ically at call-time and have no enhanced rights model.

CORBA supports remote procedure calls via an Object

Request Broker. It is much more complex than REST based

interaction and also does not provide a data access rights

model.

Web Services and in particular REST-based Web Ser-

vices share a lot of commonalities with Provalets. Web

Services can run Prova agents (Paschke and Boley 2011) as

rule-based inference services. The main difference lies in

the difference between the traditional SOA approach and

the new microservice architecture style. Traditionally, Web

Services run in a monolithic style on their host server and

provide standardized access to applications through

loosely-coupled interfaces. In contrast, Provalet microser-

vices are mobile components that can be composed to from

an application, such as a LED analytics pipeline or a

complete workflow.

Semantic Web Services, such as Semantic Annotations

for WSDL (Verma and Sheth 2007), OWL-S (Martin et al.

2007), WISMO (Roman et al. 2005), support declarative

semantic descriptions of their interfaces. They aim to dis-

ambiguating the description of Web services during auto-

matic discovery and composition of the Web services. This

is comparable to Provalets’ description language. However,

the security measures are focused on the protection of the

communication channels, which requires trusted authorities

and secure key exchange. In contrast to direct REST calls,

as used in Provalets, the loosely-coupled communication

protocols of Web Services additionally add an overhead to

each service call. Web Services can use arbitrary transfer

protocols, however, the predominant protocol used is

HTTP.

Linked Data Services (Speiser and Harth 2011) follow

the Web Service approach, acting as wrapper services for

Linked Data. Linked Open Services (Krummenacher et al.

2010) combine Linked Data endpoints and REST services

to a SPARQL-based10 approach for the composition of

services that communicate RDF. The main difference to

Provalets is that these service approaches are not mobile.

Provalets as mobile agents can be transferred to any device

by downloading them as a as microservices via a REST

request and executing them. Their runtime environment is

not fixed at the time of publication, but only when they are

requested.

Yahoo Pipes (Ankolekar et al. 2008) are used for the

aggregation and processing of RSS-feeds for semantic web

data. They follow the ‘‘pipes and filter’’ approach and allow

an aggregation and manipulation of RSS-feed data via a

simple user interface. Provalets provide a more expressive

workflow composition language which in contrast to a

simple pipes-and-filter approach also support parallel exe-

cution. The pipes approach is also not location indepen-

dent, but runs on a server. Similar Semantic Web Pipes

(Morbidoni et al. 2008) focus on Linked Data processing

pipelines that specifically consume RDF data, but as Yahoo

Pipes they do not allow the declarative implementation of

own operators and are not location independent. Pipes also

have the drawback that they read their input and write their

output completely without maintaining any state. This

prohibits parallelism in a sequential pipeline and needs the

implementation of additional control structures for main-

taining state, as needed e.g., for complex event processing

over real-time data streams.

The W3C Linked Data Platform (LDP)11 is a Linked

Data specification defining a set of integration patterns for

building REST HTTP services that are capable of reading

and writing of RDF data. Like Provalets the LDP allows

use of REST HTTP to consume, create, update and delete

both RDF and non-RDF resources. As discussed already in

the introduction, LDP follows a standard SOA approach

and not a microservice style. For instance, the LDP4j

framework (Gutiérrez et al. 2014) is a middleware imple-

mentation of LDP that facilitates the development of read-

write Linked Data applications by using Enterprise

Application Integration (EAI) techniques. Apache Mar-

motta12 implements the LDP and falls into the category of

linked data servers which provide data access SPARQL-

based query interfaces. While the LDP and Marmotta fol-

lows a Service-Oriented Architecture (SOA), a major

10 SPARQL Protocol and RDF Query Language is a W3C recom-

mendation for an RDF query language.
11 W3C LDP http://www.w3.org/TR/ldp/, accessed 1 Oct 2015.
12 Apache Marmotta http://marmotta.apache.org/. Accessed 20 Aug

2013.

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

http://www.w3.org/TR/ldp/
http://marmotta.apache.org/

www.manaraa.com

difference of Provalets is the adoption of a component-

based microservice architecture (MSA) which runs mobile

agents in container environments.

Apache Clerezza13 is an OSGi-based modular applica-

tion and a set of components for building REST Semantic

Web applications and services. OSGi is used to provide a

component model for the platform, but not for an agent

based approach as in Provalets. Instead it is also a REST

Web Service framework.

Data Mashup approaches, such as the one by IBM,

address data extraction, data flow and data presentation.

However, they are not specific to Linked Data access and

have no specified composition language, rights models and

declarative description language. Furthermore, they are not

location independent.

Related are also so called multi agent systems (MAS)

and distributed rule-based approaches, which have been

surveyed in Badica et al. (2011) and Braubach et al.

(2009). Provalets share underlying principles of such agent

architectures. However, most of them only run in propri-

etary agent environments.

A feature which distinguishes Provalets from all these

approaches is that the rule-base Prova agents (Paschke and

Boley 2011) run as microservices in enterprise container

platforms such as Java OSGi and Docker containers. Fur-

thermore, Provalets provide support for rule-based com-

positions that is grounded in a formal model of concurrent

transaction logic semantics (Zhao and Paschke 2013a).

4 Principles of Provalets

Provalets are location-independent mobile rule-based

software agents (Paschke and Boley 2011) which are

deployed as microservices in Provalet containers based on

OSGi (OSGI Alliance 2009) or Docker. Using Prova14,

these Provalet microservices support rule-based linked

(enterprise) data access15, processing and inference rea-

soning, as well as composition and communication with

messaging reaction rules. Prova (Prolog ? Java) is both a

declarative rule-based programming language and a Java-

based rule engine. Provalets have a clear REST input and

output interface, specifically an input URI and an output

URI. They run in a controlled and secure Provalet con-

tainer resource environment. Provalets describe their

functionality in terms of pre- and post-conditions on the

sets of input and output data. In the current reference

implementation they are described as Maven artifacts and

managed by OntoMaven (Paschke 2013a).

A Provalet container offers a service interface to grant

network access to Provalets. It can manage one or more

Provalets. The container resource describes itself with

metadata via a REST API. A user or agent receives

information about a container resource by sending an

HTTP request to the container URI. For example, the

container resource describes which permissions it can

grant. To use a container resource for executing a Provalet

the user sends a HTTP request adding three parameters to

the container URI: the Provalet URI, the input URI and the

output URI. In this way a Provalet can be easily executed

by a standard Web client and the results can be looked up

afterwards, by receiving the HTTP response of the output

URI. The container configuration can restrict the access

rights.

Provalets describe permissions they require as metadata

that is read by the runtime environment during deployment.

By default Provalets are solely allowed to see the data

sources which are directly served by the configured input

URI. Provalets may define additionally required permission

to access other data sources, such as e.g., additional

knowledge bases, for example to access additional static

URIs or crawl URIs that are visible in the set of input

triples. The sources of triples may be restricted by subnets,

domains, protocols or even types of triples a Provalet is

allowed to see. Provalet may provide HTTP access cre-

dentials to the input and output resources upon request.

Provalets must request permission to use additional com-

puting resources of the machine they are executed on.

A Provalet may request harddisk space to store interme-

diate results. Other resources include memory, CPU time,

account information, access to other web services. The

latter can be used by a Provalet to enforce license models

through trusted providers. It is the task of the runtime

container of a Provalet to grant required permissions and

allow access to requested resources.

The composition of Provalets consists of a component

model, a composition technique and a composition lan-

guage. Provalet components describe themselves by means

of Linked Data principles: Each Provalet has a unique URI

that is resolvable via HTTP. Each Provalet is configured

with an input URI that it is allowed to read from and an

output URI that it is allowed to write to. Furthermore, the

Provalet artifact address and the executing container

resource need to be defined. The runtime environment

controls which data type formats and which data sources

are accessible to the Provalet including the control of

permissions. The Provalet description also contains

semantic metadata about the Provalet including runtime

dependencies and policies such as permissions required on

13 Apache Clerezza https://clerezza.apache.org/, accessed 1 Oct

2015.
14 http://www.prova.ws, accessed 1 Jun 2016.
15 Prova has various built-ins for rule-based data access such as Java

object access, file access, XML (DOM), SQL, RDF triples, XQuery,

SPARQL.

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

https://clerezza.apache.org/
http://www.prova.ws

www.manaraa.com

the runtime platform as well as the description of the

functionality it provides in the form of statements about

pre- and post-conditions regarding the sets of input and

output data, definition of types, side-effects, legal norms

and policies, etc. This supports the automatic search of

Provalets for their composition.

The composition of Provalets is executed by chaining

(in a pipes-and-filter-style) the input and output connec-

tions via streaming connections, with the input stream

acting as ‘‘pipe’’ and a Provalet as ‘‘filter’’. This supports

sequential composition pipelines as well as data flow

parallelization.

Compositor Provalets represent typical workflow con-

trol constructs, such as sequential execution, parallel exe-

cution, conditional alternatives and repetitions, which are

used to compose Provalets to workflows. They are imple-

mented using Prova as declarative rule-based composition

language (Zhao et al. 2016). This provides users with

maximum flexibility to develop new Provalet compositors

and hence enrich the expressiveness of the composition

language. Moreover, with Prova’s support for mobile rule

code, injection of functionalities into generic Provalets

becomes possible.

In summary, Provalets have much in common with apps

in modern application stores for mobile platforms. Further

details about underlying Provalet concepts and the lifecycle

of Provalets can be found in Paschke (2015).

5 Implementation

Our current proof-of-concept implementation16 is provided

as four OSGI bundles:

1. provalet-container A Provalet container resource is

responsible for granting access to Provalets from the

network via HTTP GET requests,

2. provalet implements the abstract classes, interfaces

and dependencies for Provalets,

3. provalet-maven-archetype provides a Maven archetype

to generate a Provalet project for the implementation

of a new Provalet,

4. provalet-test is used to test and evaluate Provalets.

These bundles are installed and located in an OSGi

target platform (using Apache Felix) which runs the OSGi

core bundles and further necessary bundles, as Fig. 1

shows:

– Prova Service required by Provalets to use the Prova

rule engine as published ProvaService,

– Apache CXF REST Webservice required in the Provalet

container to provide an HTTP access interface,

– Jetty WebSockets required by Provalets to establish and

use WebSockets for the communication between

Provalets,

– Spring supports automatic OSGi service registration

and context resolution with Dynamic Modules.

A container resource is a special resource with an assigned

OSGi environment for the execution of Provalets. A con-

tainer resource environment, e.g., Apache Karaf (which

can run in a Docker container), sets the required system

parameters, starts the Java Security Manager and initializes

and runs the Apache Felix OSGi framework. In the OSGi

framework the Provalet container bundle is started. The

Provalet container handles the Provalet call and answers

the HTTP request with an HTTP response message. It can

resolve the Provalet characteristics by calling the Prova-

letURI and reading the Provalet description which also

includes the necessary artifact characteristics (groupId,

artifactId, version and optionally the repository). With

OntoMaven’s dependency resolution mechanism (Athan

et al. 2014; Schäfermeier and Paschke 2014; Paschke

2013b) the Provalet artifact and all its dependencies are

resolved and downloaded to a local repository using the

integrated Aether library (Sonatype 2011). The down-

loaded artifacts are then deployed in the OSGi framework

of the container resource and the inputURI is passed as an

object to the working method of the Provalet. Finally the

container resource starts the installed Provalet bundle.

After executing the working method the Provalet returns its

resulting data back to the container. The container checks

the contents and enforces restrictions on the Provalet exe-

cution and the output and writes it into the outputURI.

A Provalet container consists of a HTTP REST interface

(ProvaletServiceREST) which enables access to a particu-

lar Provalet by an OSGi service (ProvaletService) and

contains a list of all registered Provalets in its implemen-

tation (ProvaletServiceRESTImpl). A Provalet

(ProvaletServiceImpl) implements the AbstractProvalet

with custom functionalities and properties. Ab-

stractProvalet is the main class containing all important

Fig. 1 Overview Provalet OSGi bundles

16 Gitlab: https://git.imp.fu-berlin.de/ag-csw/provalets.

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

https://git.imp.fu-berlin.de/ag-csw/provalets

www.manaraa.com

information about a Provalet. The OSGI-Activator (Ab-

stractProvaletActivator) is responsible for registering the

OSGi-Service implementation (ProvaletServiceImpl) in the

OSGi-Service registry.

Once an instantiated Provalet exists, the verification of

the Provalet constraints and rules can be performed using

Prova’s rule-based inference mechanisms. The OSGi bun-

dle classloader is used to load the resources and instantiate

a Provalet instance as OSGi component with the translated

Provalet rules (and possible additional ontologies)

describing the Provalet conditions and constraints. Fur-

thermore, OSGi features (see RFC 125 OSGi) are used to

make Provalet licensing information part of the machine

readable component meta-data.

Provalets in distributed OSGi environments can com-

municate via the REST interface of the container.

Therefore a Provalet can open a (streaming) socket by

calling the activeStream function of the called Provalet.

This will open a Web socket connection for the incoming

and outgoing data communication between the two Pro-

valets. The Provalet implementation uses Jetty

WebSockets. The AbtractProvalet contains a socket

manager (SocketManager) which is responsible for

opening and connecting Web sockets. Provalets can create

new socket servers (ProvaletServer by calling newSock-

etServer) in order to connect and work with another

Provalet. Each server runs a socket thread (SocketThread

implementing Runnable), which is responsible for sending

and receiving messages. The streaming Web socket

(StreamingSocket) will forward incoming messages

(onMessage) and new connections (newConnectionOc-

cured) to the SocketManager, which assigns it to the right

Provalet for further processing.

A central goal of Provalets is to make the advantages of

Linked (Enterprise) Data available for companies. There-

fore, data privacy and security is a central aspect. The

current version of the Provalet Container Resource is based

on the Apache Felix OSGi framework. Its permission

model makes use of the Java permission model. It follows a

whitelist approach that consist of three elements. Standard

java permissions allow the restriction of system resources.

OSGi specific permissions allow the limitation of the OSGi

functionality. Additionally introduced parameterized per-

missions, such HTTP depth access permissions, type per-

missions and entropy permissions, allow Provalet specific

restrictions.

Finally, the container resource is responsible for

uninstalling all bundles and optionally removing all the

locally installed dependencies. The OSGi container

continues to run. This allows hot deployment of Prova-

lets and the start of more than one Provalet in a container

at the same time.

Two working modes of container resources are defined.

Asynchronously working containers immediately respond

with an HTTP response code indicating that the Provalet

working method was successfully started. The user of an

asynchronously started Provalet has in principal two pos-

sibilities to work with the results: (1) an agent polls the

output URI after a defined time, and (2) the agent uses a

subscription mechanism to be informed about updates in

the output URI. In the synchronous working mode of a

Provalet container the agent is redirected to the output URI

once the results have been successfully written into the

output URI. In this working mode the user can read the

result immediately after receiving the HTTP response.

However, if the execution of the Provalet takes too long the

server may return with a timeout.

6 Development Example

In this section we will illustrate the Provalet development

with a concrete example.

To automatically generate a new Provalet a Maven

archetype can be used. A Maven generated Provalet project

provides all necessary dependencies and mechanism.

Developers will obtain a Provalet project in which they can

implement the Provalet’s interfaces and abstract classes.

Provalets are Maven OSGi artifacts managed in an Onto-

Maven artifact repository using OntoMaven (Paschke

2013a, b). The following example shows the use of the

provalet-maven-archetyp:

mvn archetype:generate
-DarchetypeRepository=http://www.corporate-semantic-web:8081/
ontomaven

-DarchetypeGroupId=de.fuBerlin
-DarchetypeArtifactId=IfOperationProvalet
-DarchetypeVersion=1.0
-DgroupId=de.fuBerlin.provalet
-DartifactId=<ProvaletArtifactID>
-Ddeveloper=<developerName>
-DdistributionRepositoryURL=<distrRepositoryURL>
-DProvalet-repository-id=<distrRepositoryID>

The first four parameters declare the archetype’s loca-

tion and characteristics. Further parameters can be speci-

fied by the developer, e.g.:

– provaletGroupID and provaletArtifactID declare the

artifact parameters of the Provalet that should be

created.

– distrRepositoryURL and distrRepositoryID indicate the

parameters of the distribution repository for the

Provalet deployment.

When using this archetype Maven automatically creates the

IfOperationProvalet with all dependencies and classes,

namely an Activator as the entry point for the OSGi

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

www.manaraa.com

bundles and Provalet as extension of the AbstractProvalet.

Four abstract methods from AbstractProvalet need to be

implemented in the IfOperationProvalet:

1. getRuleBase() returns the Prova rule base of the

Provalet.

2. onMessage(String message) receives the incoming

messages and can optionally apply additional pre-

processing and transformations before the message is

forwarded to the Prova agent service.

3. getProvaletDesription() is used to request the Prova-

let’s description.

4. call() is used for direct communication with the

Provalet.

To execute the IfOperationProvalet the user needs to call

the URI of a container resource (container) via an HTTP

GET request providing the URI of the Provalet (provalet)

with the input (input), the output URI (output), and three

parameters for the if operation: a condition (if); a statement

that will be executed in the case of a positive condition

evaluation (then); and a statement that will be executed in

the case of a negative condition evaluation (else):

Figure 2 shows the control-flow of an if-then-else

composition of Provalets.

When the above REST request is received, the container

server activates and calls the IfOperationProvalet. It will

call the server in order to start a SPARQLProvalet and open

a socket connection to it. Programmatically, a socket server

is create by the following code:

//create a new socket server
ProvaletSendMessage conn = createSocket(8123, new ProvaletOnMessage() {

public void onMessage(ProvaletMessage message) { ... } }
)

After the server is started and the connection is open, a

Provalet can connect to the created connection. The

IfOperationProvalet will send the SPARQL query as a

message to the SPARQLProvalet via the opened socket

connection using Prova’s send and received messaging

reaction rules.

%Prova file: send a message
sender(Message, Answer) :-

sendMsg(XID,osgi,"SPARQLProvalet",Message,
{destination->"ws://127.0.0.1:8123"}),

receiveMsg(XID,osgi,"SPARQLProvalet",Answer).

The SPARQLProvalet will receive the message and

process the SPARQL query using Prova’s SPARQL built-

ins:

sparql(Connection,Input,Output) :-
sparql_connect(ConnectionID, Connection),
sparql_select(ConnectionID, Input, QueryID),
sparql_results(QueryID, Output).

The query result is sent back to the IfOperationProvalet

that will use it to evaluate the condition (if).

If the condition evaluation is positive, the ThenProvalet

(then) will be started, or else the ElseProvalet will be

started using the output stream (output) of the IfOpera-

tionProvalet as input data source.

http://de.fuBerlin.provalet/containerResource/start?provalet=http://de.fuBerlin.
provalet/repository/ifOperationProvalet&input=http://dbpedia.org/sparql/?query=
SELECT [...]&output=http://de.fuBerlin.provalet/output-pipe&if=[condition]&then=
http://de.fuBerlin.provalet/repository/ThenProvalet&else=http://de.fuBerlin.provalet
/repository/ElseProvalet

Fig. 2 Example with if-then-else composition of Provalets

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

www.manaraa.com

By using Prova as rule language for the Provalets logic,

it is possible to represent expressive conditions which go

beyond simple arithmetic tests. Prova allows using Prova-

lets for implementing expressive operators and interference

logic. Moreover, for the composition of Provalets a Prova-

based workflow composition technique (Zhao and Paschke

2012, 2013a, b; Zhao et al. 2016) is used and implemented

by Compositor Provalets, such as in the above example IF-

operator Provalet. There are three kinds of compositors:

and, xor and or. They can be used as either split (one

incoming, multiple outgoing branches) or join (multiple

incoming, one outgoing branch) connectors. The task

dependencies of a Provalet workflow is directly imple-

mented by messaging reaction rules in the internal Prova

agent logic. Therefore two types of Prova reaction rules are

used: inline and global reaction rules. The inline reaction

rules are usually locate in the body of a rule and act as its

sub-goals. They can be restricted to accept just one mes-

sage, a specified number of messages, or be limited by a

timeout, which can be employed to implement a non-local

XOR join connector, local XOR join connector and OR join

connector, respectively. The semantics of global reaction

rules are aligned with message (event)-driven reactive

rules. A global reaction rule has a rule base lifetime scope,

i.e., it is active while the rule base runs on a Prova engine

(agent), and it is ready to receive any number of messages

arriving at the Provalet.

7 Evaluation

As discussed in Sect. 3 the main distinguishing feature of

Provalets, compared to other related approaches, is its

component-based micro-service architecture which, by its

use of rule-based Prova agents and a rule-based composi-

tion technique, allows combining Provalet agents to build

applications and workflows for complex data processing

and inference-based analytics tasks. Table 1 compares

Provalets with related existing approaches according to the

following requirements:

• Possibility of (rule-based) data processing Can the

considered technology be used to consume and produce

Linked Data resources?

• Enhanced permission model Does the technology offer

a way to control the flow of sensitive data in a fine-

grained way?

• Network-availability Is the considered technology use-

able over a network? Can standard protocols be used?

• Location-independency Can the corresponding code be

executed on a server which the use can trust? How

simple is the change of this location?

• Composability Does the technology offer a way to

compose different elements after their compilation?

• Scalability Does the technology scale to large amounts

of treated data?

• Declarativity Does it support a declarative description

language which allows separation of concerns?

In summary, Provalets, with their mobile component-

based and declarative rule-based approach, have a clear

advantage in addressing the initially stated requirements in

a Corporate Semantic Web for LED-based processing

application. The existing disadvantage of Provalets (and

microservices in general) is their additional complexity in

terms of communication latencies. Overheads in inter-

change and network restrictions slow down the transfer of

resources and (Onto-)Maven-based deployment of Provalet

artifacts. However, by reusing instantiated Provalets in

Table 1 Provalet comparison

Provalet EJB Corba Web

services

Linked data

services

Yahoo

pipes

Semantic web

pipes

IBM

mashups

Program

APIs

Rule-based data

access

x x x x x x

Enhanced rights

model

x

Network

availability

x x x x x x x

Location

independency

x x x

Composability x x x x x x x

Scalability x x x x x x x

Declarative

language

x x x x

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

www.manaraa.com

existing containers and by parallelization this disadvantage

can be overcome.

The evaluation of the expressiveness of Provalets rule-

based approach17 is based on ‘‘Workflow Data Patterns

(WDP), which capture the various ways in which data is

represented and utilized in workflows’’ (Russell et al.

2005) and on ‘‘Workflow Control-Flow Patterns (WCP)’’

from the Workflow Patterns Initiative (2015).

In summary18, of the 40 data-related WDPs, 33 patterns

are supported by Provalets. The rule-based approach sup-

ports data transformations (WDP-3219 and 33) and event-

based conditional triggers and routing, as well as complex

domain-specific preconditions and postconditions (WDP-

34–37). As required for the security mechanisms of Pro-

valets, data remains local in a Provalet task operation and

no shared data between tasks is allowed, i.e. the data vis-

ibility patterns WDP-02, 03, 05, 06 and 07 are not sup-

ported. Based on Prova’s messaging reaction rules, the

composition language supports all external data interaction

patterns, especially the ones which receive and respond to

requests for data elements from the external environment

(WDP-17–25).

From the WCPs, 26 patterns are supported, including

basic workflow patterns (i.e., WCP-01–05), advanced

branching and synchronization patterns (i.e., WCP-06–09,

28–33, 37–38, 41, 42), the state-based patterns (i.e., WCP-

16–18, 39–40) and trigger patterns (i.e., WCP-23 and 24).

This also includes state-based patterns in which decisions

are made according to the currently processed data in a

Provalet. Provalet’s rule-based approach supports expres-

sive decision logic, thereby supporting the patterns WCP-

16 and 18 and reaction logic, supporting trigger patterns:

Transient Trigger (WCP-23) and Persisten Trigger (WCP-

24).

8 Conclusions

Provalets, as mobile component-based software agents,

allow moving access, processing and inference-based

analytics close to the data, which is essential to address

typical requirements in a (partially) closed Corporate

Semantic Web in which private Linked Enterprise Data is

consumed. The application of the OSGi standard makes it a

generic approach suitable for different environments from

distributed smart Internet of Things (IoT) to centralized

clouds and service platforms. The rule-based approach

using the Prova rule language and agent architecture pro-

vides an expressive declarative programming model. In

particular, by using the same language for the composition

language, as for the rule-based data access, processing and

analytics functionalities, has benefits, as this allows meta

reasoning on the Provalet descriptions and makes defined

operators first-class citizens in the rule-based programming

logic. By using OntoMaven for the life cycle management

of Provalet artifacts in standard repositories such as Git or

SVN it becomes easy to use Provalets in Corporate

Semantic Web applications. This makes Provalets a novel

microservice programming model for LED-based applica-

tions providing solutions for various use cases, such as the

ones described in Sect. 2. Future research will further

generalize the description of Provalets with the upcoming

OMG API4KB standard (Athan et al. 2015b; Paschke et al.

2015)20 and will continue to optimize the Provalet archi-

tecture for streaming analytics and edge computing in

resource constraint environments.

Acknowledgments This work has been partially supported by the

‘‘InnoProfile-Corporate Smart Content’’ project funded by the Ger-

man Federal Ministry of Education and Research (BMBF) and the

BMBF Innovation Initiative for the New German Länder – Entre-

preneurial Regions.

References

Ankolekar A, Krötzsch M, Tran T, Vrandecic D (2008) The two

cultures: mashing up Web 2.0 and the Semantic Web. J Web

Sem 6(1):70–75

Athan T, Bell R, Kendall E-F, Paschke A, Sottara D (2015a) API4KP

Metamodel: a meta-API for heterogeneous knowledge platforms.

In: Rule technologies: foundations, tools, and applications –

Proceedings of the 9th International Symposium RuleML,

Berlin, pp 144–160

Athan T, Bell R, Kendall E-F, Paschke A, Sottara D (2015b) API4KP

Metamodel: A meta-API for heterogeneous knowledge plat-

forms. In: Rule technologies: foundations, tools, and applications

– Proceedings of the 9th International Symposium RuleML,

Berlin, pp 144–160

Athan T, Schäfermeier R, Paschke A (2014) An algorithm for

resolution of common logic (Edition 2) importation implemented

in OntoMaven. In: Proceedings of the 8th International Work-

shop on Modular Ontologies, Rio de Janeiro

Badica C, Braubach L, Paschke A (2011) Rule-based distributed and

agent systems. In: Rule-based reasoning, programming, and

applications – Proceedings of the 5th International Symposium

RuleML, Barcelona, pp 3–28

Balalaie A, Heydarnoori A, Jamshidi P (2016) Microservices

architecture enables DevOps: migration to a cloud-native

architecture. IEEE Softw 33(3):42–52

Boley H, Paschke A, Omair Shafiq M (2010) RuleML 1.0: the

overarching specification of web rules. In: Semantic web rules –

Proceedings of the International Symposium RuleML, Wash-

ington, DC, pp 162–178

17 it should be noted that the evaluation of the full Prova rule

language and the Prova agents, which are used within a Provalet, is

out of the scope of this article and can be found elsewhere in the

publications about Prova.
18 For further details see Zhao et al. (2016).
19 Our numbering of the patterns is according to ordering in release

(Russell et al. 2006). 20 http://www.omgwiki.org/API4KB/.

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

http://www.omgwiki.org/API4KB/

www.manaraa.com

Braubach L, Pokahr A, Paschke A (2009) Using rule-based concepts

as foundation for higher-level agent achitectures. In: Giurca A,

Gasevic D, Taveter K (eds) Handbook of research on emerging

rule-based languages and technologies: open solutions and

approaches. IGI Global, Hershey, Pennsylvania (USA),

pp 215–252

Dimitrov M, Simov A, Petkov Y (2015) Text analytics and linked

data management as-a-service with S4. In: ESWC 2015 work-

shop on semantic web enterprise adoption and best practices

Gutiérrez M E, Mihindukulasooriya N, Garcı́a-Castro R (2014)

LDP4j: a framework for the development of interoperable read-

write Linked Data applications. In: Proceedings of the ISWC

Developers Workshop 2014, Riva del Garda, pp 61–66

Hu B, Svensson G (2010) A case study of linked enterprise data. In:

The semantic web – 9th international semantic web conference,

ISWC 2010, Shanghai, revised selected papers, part II. Springer,

Heidelberg, pp 129–144

Hu B, Svensson G (2010) A case study of linked enterprise data. In:

The semantic web—9th international semantic web conference,

ISWC 2010, Shanghai, revised selected papers, part II. Springer,

Heidelberg, pp 129–144

Krummenacher R, Norton B, Marte A (2010) Towards linked open

services and processes. In: Berre A-J, Gómez-Pérez A, Tutschku

K, Fensel D (eds) Future Internet – FIS 2010 – Proceedings of

the 3rd Future Internet Symposium, Lecture Notes in Computer

Science, vol 6369. Springer, Berlin, pp 68–77

Martin D-L, Burstein M-H, McDermott DV, McIlraith SA, Paolucci

M, Sycara KP, McGuinness DL, Sirin E, Srinivasan N (2007)

Bringing semantics to web services with OWL-S. World Wide

Web 3:243–277

Mihindukulasooriya N, Garcia-Castro R, Gutiérrez M E (2013)

Linked Data Platform as a novel approach for enterprise

application integration. In: Proceedings of the 4th International

Workshop on Consuming Linked Data, Sydney

Morbidoni C, Phuoc D L, Polleres A, Samwald M, Tummarello G

(2008) Previewing semantic web pipes. In: The semantic web:

research and applications. Proceedings of the 5th European

Semantic Web Conference, Tenerife, pp 843–848

OSGI Alliance (2009) OSGi service platform, core specification,

release 4, version 4.2. Technical report, OSGI Alliance

Paschke A (2011) Rules and logic programming for the web. In:

Reasoning web. Semantic technologies for the web of data – 7th

International Summer School 2011, Galway, Ireland, August

23–27, 2011, Tutorial Lectures, pp 326–381

Paschke A (2013a) OntoMaven API4KB – a Maven-based API for

knowledge bases. In: Proceedings of the 6th international

workshop on semantic web applications and tools for life

sciences, Edinburgh

Paschke A (2013b) OntoMaven: Maven-based ontology development

and management of distributed ontology repositories. CoRR,

abs/1309.7341

Paschke A (2014) Reaction RuleML 1.0 for rules, events and actions

in semantic complex event processing. In: Rules on the web.

From theory to applications – Proceedings of the 8th interna-

tional symposium RuleML 2014, Prague, pp 1–21

Paschke A (2015) Provalets – OSGi-based Prova agents for rule-

based data access. In: On the move to meaningful internet

systems – Proceedings of the confederated international confer-

ences: CoopIS, ODBASE, and C&TC 2015, Rhodes, pp 519–526

Paschke A, Athan T, Sottara D, Kendall E-F, Bell R (2015) A

representational analysis of the API4KP metamodel. In: Formal

ontologies meet industry – Proceedings of the 7th international

workshop FOMI 2015, Berlin, pp 1–12

Paschke A, Boley H (2011) Rule responder: rule-based agents for the

semantic-pragmatic web. Int J Artif Intell Tools

20(6):1043–1081

Paschke A, Boley H (2014) Distributed rule-based agents with rule

responder and reaction RuleML 1.0. In: Proceedings of the

RuleML 2014 Challenge and the RuleML 2014 Doctoral

Consortium hosted by the 8th International Web Rule Sympo-

sium, Challenge?DC@RuleML 2014, Prague

Paschke A, Schäfermeier R (2015) Aspect OntoMaven – aspect-

oriented ontology development and configuration with OntoMa-

ven. In: Abramowicz W (ed) Business information systems

workshops – BIS 2015, Pozna, revised papers, vol 228

Paschke A, Schäfermeier R (2015) Einordnung und Abgrenzung des

Corporate Semantic Webs. In: Ege B, Humm B, Reibold A (eds)

Corporate semantic web. X.media.press, Springer, Heidelberg,

pp 11–21

Roman D, Keller U, Lausen H, de Bruijn J, Lara R, Stollberg M,

Polleres A, Feier C, Bussler C, Fensel D (2005) Web service

modeling ontology. Appl Ontol 1(1):77–106

Russell N, van der Aalst W M P, Mulyar N (2006) Workflow control-

flow patterns: a revised view. Technical report, BPMcenter.org

Russell N, ter Hofstede AHM, Edmond D, van der Aalst WMP (2005)

Workflow data patterns: identification, representation and tool

support. In: Proceedings of the 24th International conference on

conceptual modeling ER’05. Springer, Heidelberg, pp 353–368

Schäfermeier R, Paschke A (2014) Aspect-oriented ontologies:

dynamic modularization using ontological metamodeling. In:

Formal ontology in information systems - Proceedings of the 8th

International Conference FOIS Rio de Janeiro, pp 199–212

Schmachtenberg M, Bizer C, Paulheim H (2014) Adoption of the

Linked Data best practices in different topical dDomains. In: The

Semantic Web – ISWC 2014 – proceedings of the 13th

international semantic web conference. Riva del Garda, Part I,

pp 245–260

Sonatype (2011) Aether. http://aether.sonatype.org/. Accessed 23 Sep

2015

Speiser S, Harth A (2011) Integrating Linked Data and services with

Linked Data Services. In: The semantic web: research and

applications – Proceedings of the 8th extended semantic web

conference ESWC 2011. Heraklion, Part I, pp 170–184

Teymourian K, Paschke A (2016) Semantic enrichment of event

stream for semantic situation awareness. Springer, Cham,

pp 185–212

Vermad K, Sheth A (2007) Semantically annotating a web service.

IEEE Internet Comput 11:83–85

Wood D (2010) Linking enterprise data. Springer, New York

Workflow Patterns Initiative (2015) Workflow Patterns. http://www.

workflowpatterns.com/. Accessed 23 Sep 2015

Zhao Z, Paschke A (2012) Event-driven scientific workflow execu-

tion. In: Business process management workshops – BPM 2012

international workshops. Tallinn, Revised Papers, pp 390–401

Zhao Z, Paschke A (2013a) A formal model for weakly-structured

scientific workflows. In: Proceedings of the 6th international

workshop on semantic web applications and tools for life

sciences, Edinburgh

Zhao Z, Paschke A (2013b) Rule agent-oriented scientific workflow

execution. In: Proceedings of the 5th international conference

S-BPM ONE – running processes, Deggendorf, pp 109–122

Zhao Z, Paschke A, Ruisheng Z (2016) A rule-based agent-oriented

approach for supporting weakly-structured scientific workflows.

J Web Sem 37:36–52

123

A. Paschke: Provalets: Component-Based Mobile Agents as Microservices for..., Bus Inf Syst Eng 58(5):329–340 (2016)

http://aether.sonatype.org/
http://www.workflowpatterns.com/
http://www.workflowpatterns.com/

	Provalets: Component-Based Mobile Agents as Microservices for Rule-Based Data Access, Processing and Analytics
	Abstract
	Introduction
	Application Scenarios
	Related Work
	Principles of Provalets
	Implementation
	Development Example
	Evaluation
	Conclusions
	Acknowledgments
	References

